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Abstract In this paper we introduce a minimax model unifying several classes of sin-
gle facility planar center location problems. We assume that the transportation costs
of the demand points to the serving facility are convex functions {Qi}, i = 1, . . . , n, of
the planar distance used. Moreover, these functions, when properly transformed, give
rise to piecewise quadratic functions of the coordinates of the facility location. In the
continuous case, using results on LP-type models by Clarkson (J. ACM 42:488–499,
1995), Matoušek et al. (Algorithmica 16:498–516, 1996), and the derandomization
technique in Chazelle and Matoušek (J. Algorithms 21:579–597, 1996), we claim that
the model is solvable deterministically in linear time. We also show that in the sep-
arable case, one can get a direct O(n logn) deterministic algorithm, based on Dyer
(Proceedings of the 8th ACM Symposium on Computational Geometry, 1992), to
find an optimal solution. In the discrete case, where the location of the center (server)
is restricted to some prespecified finite set, we introduce deterministic subquadratic
algorithms based on the general parametric approach of Megiddo (J. ACM 30:852–
865, 1983), and on properties of upper envelopes of collections of quadratic arcs. We
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apply our methods to solve and improve the complexity of a number of other location
problems in the literature, and solve some new models in linear or subquadratic time
complexity.

Keywords Center location · Quadratic programming · LP-type models · Parametric
approach

1 Introduction

Since the early seventies, single facility geometric minimax location models have
been discussed and analyzed quite frequently from a mathematical programming
point of view. Megiddo [30], in his 1983 seminal paper, was the first to prove that
the classical planar minimum covering sphere problem (studied algorithmically by
Elzinga and Hearn [19, 20]), can be solved in optimal linear time as a 3-variable con-
vex quadratic program. Megiddo’s work has since been extended to solve in linear
time other related, more general, geometric problems, viewed as convex mathemat-
ical programs. (Representative examples are the weighted Euclidean center problem
[17], the minimum volume covering ellipsoid [18], and the minimum ball spanned by
balls [33], in any fixed dimension). The above models are special cases of a minimax
single facility (1-center) geometric location model where the transportation costs of
the customers are convex quadratic functions of the location of the server (facility).

We also find in the literature several papers dealing with related minimax geo-
metric problems where the transportation cost functions are not pure quadratic, e.g.,
the round trip 1-center problem [9, 15], the quadratic bicriteria model in [36] and
the stochastic rectilinear 1-center problem [22]. These models are currently solved in
non-optimal superlinear time.

In the above (continuous) geometric models, the server can be located at any point
in the plane (or in some convex subset). The discrete versions of these models, where
the server is constrained to belong to some discrete prespecified subset, have also
been extensively studied. Note that, unlike the continuous models, optimal algorithms
for some of the discrete models have superlinear complexity, e.g., the discrete mini-
mum covering sphere problem [28].

Our goal in this paper is to present a convex, piecewise quadratic model which
generalizes and unifies a variety of planar 1-center problems in the literature. We will
show that the continuous version of the model can be solved in optimal linear time
by using the modern LP-type algorithms developed by Clarkson [12] and Chazelle
and Matoušek [10]. For the discrete version of our unifying model we present a sub-
quadratic algorithm based on the general parametric approach of Megiddo [31], and
on properties of upper envelopes of collections of quadratic arcs.

To further motivate and explain the features of our unifying general model, we
first provide a more detailed survey of some of the most common related models in
the literature.

Given a set of n points in the plane, V = {vi = (Ai,Bi) : i = 1, . . . , n}, viewed
as demand points, the planar 1-center problem is to find the location x = (x1, x2) of
a single server (center), minimizing the maximum of the transportation costs from
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the demand points to the server. Formally, if d denotes the planar distance function
used, each demand point vi , i = 1, . . . , n, is associated with a monotone real function
Qi(t), and the transportation cost function from vi to a server located at x = (x1, x2)

is given by Qi(d(vi, x)). The goal is to minimize maxi=1,...,n Qi(d(vi, x)). The
reader is referred to the two papers by Frenk, Gromicho and Zhang [23, 24] for planar
1-center problems, involving general nonlinear transportation cost functions. (Even
though our study focuses on piecewise quadratic models, in Sect. 6.5 we show some
non quadratic problems that can be solved by the techniques presented in the paper.)

The case where all the functions {Qi} are linear unifies a variety of classical
Euclidean geometric problems. For example, the Euclidean 1-center problem, where
Qi(d(vi, x)) = d(vi, x) for i = 1, . . . , n, and d is the Euclidean distance, amounts to
finding the circle of minimum radius enclosing all the points in V . This problem was
optimally solved in O(n) time in the seminal paper of Megiddo [30]. Two other more
general classical geometric models are defined as follows: Given is a set of n discs
{Di : i = 1, . . . , n} in the plane. For i = 1, . . . , n, Di has a radius ri and it is centered
at vi . In the first model [33], the goal is to find a disc of minimum radius enclos-
ing the n given discs. It corresponds to the case where Qi(d(vi, x)) = ri + d(vi, x),
for i = 1, . . . , n. In the second model, the goal is to find a disc of minimum ra-
dius intersecting the n given discs. This problem corresponds to the case where
Qi(d(vi, x)) = −ri + d(vi, x), for i = 1, . . . , n. (We are unaware of any paper dis-
cussing the second model explicitly. We note, however, that in this facility location
problem, each disc Di , i = 1, . . . , n, models an ‘extensive’ customer, and the trans-
portation cost is the distance of the server from the extensive customer. See [37] for
more examples of location problems dealing with extensive customers, e.g., paths,
subtrees or neighborhoods in a network metric space.) Dyer [17] generalized the
result in [30], and presented an O(n) algorithm for solving the weighted Euclid-
ean 1-center model defined by setting Qi(d(vi, x)) = wid(vi, x), i = 1, . . . , n. (The
weights {wi}i are assumed to be positive.)

Finally, Dyer [18] unified all the above Euclidean models and presented a lin-
ear time algorithm for the case defined by Qi(d(vi, x)) = si + wid(vi, x), for
i = 1, . . . , n, where {si}i are arbitrary reals and {wi}i are nonnegative weights. (Dyer
considered only the case where {si}i are nonnegative. Nevertheless, his model can
be easily adapted to the general case. See the general formulation in Sect. 6.1.) In
particular, it follows that even the following Euclidean geometric problem is solv-
able in O(n) time: Given the above set of n discs, {Di : i = 1, . . . , n}, and an inte-
ger 1 ≤ n′ ≤ n, find a disc of minimum radius, enclosing (containing) the n′ discs
{Di : i = 1, . . . , n′} and intersecting the n − n′ discs {Di : i = n′ + 1, . . . , n}.

We note in passing that the rectilinear (�1) versions of the above Euclidean clas-
sical models are reducible to 3-variable linear programs, and therefore can be solved
in O(n) time [30], by using the following LP formulation.

min z,

s.t. z ≥ si + wi(Ai − x1) + wi(Bi − x2), ∀i = 1, . . . , n,

z ≥ si − wi(Ai − x1) + wi(Bi − x2), ∀i = 1, . . . , n,

z ≥ si + wi(Ai − x1) − wi(Bi − x2), ∀i = 1, . . . , n,
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z ≥ si − wi(Ai − x1) − wi(Bi − x2), ∀i = 1, . . . , n.

In comparison, to solve the above weighted Euclidean problems in linear time,
Dyer [18] presented a simple and clever way to formulate these problems as fixed di-
mensional “almost” linear programs. (See the Appendix.) Specifically, in these con-
vex programs the objective function and all but a fixed number of constraints are
linear, and the nonlinear constraints are convex and “essentially equivalent” to poly-
nomials. He also showed how to solve this class of convex programs in O(n) time.
In the context of the planar 1-center problem defined above, the model and algorithm
in [18] do not seem to be applicable to location problems where the cost functions
{Qi}i , when expressed in terms of the variables (x1, x2), are neither separable nor
representable as pure convex quadratics. Our study was motivated by one such prob-
lem where the cost functions are separable but consist of several convex quadratic
pieces. This is the following probabilistic planar center problem discussed and ana-
lyzed recently by Foul [22].

Let {Yi = (Ui,Vi) : i = 1, . . . , n}, be a set of n independent bivariate random
variables. For i = 1, . . . , n, Ui(Vi), is a uniform random variable in the interval
[Ai − ri/2,Ai + ri/2], ([Bi − si/2,Bi + si/2]), ri > 0, (si > 0), with probability den-
sity function fUi

(.)(fVi
(.)). The set {Yi}i represents a set of n random demand points

in the plane, where the expected value of the random vector Yi is E[Yi] = (Ai,Bi),
for i = 1, . . . , n. For each pair of points x = (x1, x2), y = (y1, y2) in the plane let
d1(y, x) denote the rectilinear planar distance between them. The rectilinear planar
weighted 1-center problem with uniformly distributed demand points is to find a point
x∗ = (x∗

1 , x∗
2 ) minimizing the maximum of the weighted expected distances from x

to the n demand points. Specifically, minimize the nonlinear function

U(x) = U(x1, x2) = max
i=1,...,n

wiE[d1(Yi, x)].

wi , i = 1, . . . , n, is a positive real weight. Restricting the domain of U(x1, x2)

to the rectangle R0 = {(x1, x2) : A′ ≤ x1 ≤ A′′,B ′ ≤ x2 ≤ B ′′}, where A′ =
mini=1,...,n(Ai − ri/2), B ′ = mini=1,...,n(Bi − si/2), A′′ = maxi=1,...,n(Ai + ri/2),
and B ′′ = maxi=1,...,n(Bi + si/2), it is shown in [22] that

U(x1, x2) = max
i=1,...,n

wi(fi(x1) + gi(x2)),

where

fi(x1) =
⎧
⎨

⎩

(x1 − Ai)
2/ri + ri/4, if Ai − ri/2 ≤ x1 ≤ Ai + ri/2,

−x1 + Ai, if A′ ≤ x1 ≤ Ai − ri/2,
x1 − Ai, if Ai + ri/2 ≤ x1 ≤ A′′,

and

gi(x2) =
⎧
⎨

⎩

(x2 − Bi)
2/si + si/4, if Bi − si/2 ≤ x2 ≤ Bi + si/2,

−x2 + Bi, if B ′ ≤ x2 ≤ Bi − si/2,
x2 − Bi, if Bi + si/2 ≤ x2 ≤ B ′′.
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Looking at the expression of U(x1, x2) we note that this rectilinear probabilistic
model is a special case of a more general model, where the transportation cost of the
i-th demand point is given by a bivariate real function

Qi(|x1 − Ai |, |x2 − Bi |), (1)

where Qi is a separable, convex and piecewise quadratic function. Foul [22] suggests
the use of classical infinite iterative nonlinear 2-dimensional search procedures to
approximate the optimal solution within any desirable accuracy level. We will show
that this model can actually be solved exactly by a linear time deterministic algorithm.

More generally, in this paper we concentrate on a model unifying the above and
several other classes of planar center location problems where the functions {Qi}i
give rise to convex and piecewise quadratic functions of the variables (x1, x2).

As a planar convex program this problem is an LP-type (or GLP) problem, and
therefore can also be solved by randomized algorithms which require only a linear
number of operations. (See [1, 2, 12, 29].) Moreover, since all the functions are con-
vex piecewise quadratic, (with a constant number of pieces per each function), the
derandomization technique of the algorithm of Clarkson [12] presented in [10], is
applicable to this model, yielding a deterministic O(n) time algorithm.

We also consider the discrete version of our general planar continuous model,
where the location of the center (server) is constrained to be in some prespecified
finite set of cardinality m. The above linear time methods of Dyer [18], Clarkson
[12], Matoušek, Sharir and Welzl [29], and Chazelle and Matoušek [10], are not ap-
plicable to the discrete models. In fact, as noted above, even the classical discrete
Euclidean planar 1-center problem, where m = n, has an optimal nonlinear θ(n logn)

algorithm [28]. Halman [26, 27] developed a discrete LP-type model, and presented
a randomized linear time algorithm for its solution. With his framework the clas-
sical discrete weighted rectilinear center problem with m = n, can be solved by a
randomized algorithm in (expected) linear time. (The best known complexity result
for a deterministic algorithm for this discrete weighted problem is still O(n logn).)
However, his framework is not applicable to the discrete version of our general pla-
nar model. In fact, as shown in [26], his discrete model is not applicable even to the
Euclidean planar center problem. A crucial finiteness assumption on the dimension
of certain discrete Helly systems is not satisfied in the Euclidean case.

To solve the discrete planar version, we will introduce deterministic subquadratic
algorithms based on the general parametric approach of Megiddo [31], and on prop-
erties of upper envelopes of collections of quadratic arcs. (We note that this latter
parametric approach is also applicable to the continuous models. Its complexity is
superlinear, higher than the linear complexity of the above LP-type approach. Nev-
ertheless, in situations where we need to solve simultaneously, both, the continuous
and the discrete cases, e.g., in feasibility studies, the parametric approach might be
advantageous.)

The methods we suggest solve and improve the complexity of a number of loca-
tion problems in the literature, and solve some new models in linear or subquadratic
time complexity. Tables 1 and 2 present a summary of the general results included in
the paper. (Unless otherwise stated, the complexity bounds in the tables refer to de-
terministic algorithms.) The implementation of these results to specific models from
the literature appear in Sect. 6.
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Table 1 Complexity results for the continuous problem

Weighted continuous 1-center

Extended parametric Piecewise quadratic Euclidean Rectilinear

R
2 Theorem 4.2 Theorem 3.1 [17] [32]

O(λ5(n) log3 n) O(n) O(n) O(n)

O(n) (randomized)

R
d Proposition 5.2 Proposition 5.1 [17] [32]

O(n) (randomized) O(n) O(n) O(n)

Table 2 Complexity results for
the discrete problem Weighted discrete 1-center

Extended parametric Euclidean Rectilinear

R
2 Theorem 4.2 Theorem 4.1 Proposition 5.3

O((m + λ5(n)) log3 n) O(n log3 n) O(n logn)

R
d Proposition 5.3

O(n logn)

[27]
O(n) (randomized)

The paper is organized as follows. In Sect. 2 we present a general minimax pla-
nar optimization problem using continuous, convex, piecewise quadratic functions.
In Sect. 3 we discuss the solvability of the continuous model. Specifically, we note
that the linear time deterministic algorithms of Chazelle and Matoušek [10] are ap-
plicable. In the separable case there is an alternative algorithm to solve the contin-
uous model. In the pure quadratic case the deterministic O(n) geometric algorithm
of Dyer [18], which seems to be simpler than the O(n) method of Chazelle and Ma-
toušek [10], is applicable. (In the piecewise quadratic case one can also find the exact
optimal solution in O(n logn) time, by implementing the algorithm in [18], after
solving O(logn) line restricted subproblems.)

In Sect. 4 we focus on the discrete models. We combine methods of computing
envelopes of algebraic curves, with the parametric approach of Megiddo [31] to pro-
duce subquadratic algorithms.

Section 5 is devoted to the extensions of our results to R
d . In Sect. 6 we present

several models from the literature that can be solved using the methodologies devel-
oped in previous sections. The paper ends with some final comments and questions.
We also include an Appendix that contains, for the sake of readability, some technical
results that are used in the paper.

2 The Unifying Model

We consider the following minimax planar optimization problem, generalizing and
unifying several classes of convex single facility planar location problems. Let
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R0 ⊆ R
2 be a closed and bounded rectangle. For i = 1, . . . , n, let Hi(x1, x2) be a

continuous, convex, piecewise quadratic function, where its pieces are induced by a
planar grid (arrangement) defined by pi lines, which we call partitioning lines. pi is
assumed to be constant. If pi = 0 we will say that Hi(x1, x2) is a pure quadratic.
(A quadratic function q(x) on R

d is defined by q(x) = xT Dx + cT x + k, where D

is a symmetric real matrix, c is a vector and k is a real. q(x) is convex if and only if
D is also positive semi-definite.)

min U(x1, x2) = max{Hi(x1, x2) : i = 1, . . . , n},
s.t. (x1, x2) ∈ R0.

(2)

Note that U(x1, x2) is the upper envelope (pointwise maximum function) of the col-
lection {Hi}i , and therefore it is convex and piecewise quadratic. We refer to the
above problem as the (continuous) planar piecewise quadratic 1-center problem. An
equivalent parametric formulation is given by,

min z,

s.t. Hi(x1, x2) ≤ z, ∀i = 1, . . . , n,

(x1, x2) ∈ R0.

Since the dependence on the parameter z is linear, we will sometimes refer to the
problem as the linear parametric problem. We also focus on the following discrete
version of the above 1-center problem, where there is an additional constraint, re-
stricting the location of the center to some prespecified planar finite set. Formally,
given is a set of m points V = {vj = (Aj ,Bj ) : j = 1, . . . ,m} in the plane. The dis-
crete planar piecewise quadratic 1-center problem is formulated as

min
j=1,...,m

U(Aj ,Bj ).

Throughout the paper we will also discuss the particular geometric instances of
our model corresponding to the Euclidean and rectilinear 1-center problems. As
noted above, these cases are defined by setting Qi(d(x, vi)) = wid(x, vi) + si for
i = 1, . . . , n. We refer to the terms {si}i as addends.

Consider the Euclidean case. If si = 0 for all i = 1, . . . , n, then by setting
Hi(x1, x2) = (wid(x, vi))

2, we obtain an instance of the above unifying model. But
for arbitrary values of {si}i some modification is needed. Specifically, this Euclid-
ean 1-center problem can be written as the following variant of the above parametric
quadratic model,

min z,

s.t. Hi(x1, x2) ≤ (z − si)
2, ∀i = 1, . . . , n,

(x1, x2) ∈ R0, z ≥ max
i=1,...,n

si .

More generally, consider a Euclidean 1-center problem, where for each customer
the transportation cost function is either linear or pure quadratic in the distance to the
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server. (See [23, 24], for planar 1-center problems with more general nonlinear cost
functions.)

Specifically, suppose that Qi(d(x, vi)) = wid(x, vi) + si for i = 1, . . . , n′, and
Qi(d(x, vi)) = (wid(x, vi))

2 + si for i = n′ + 1, . . . , n. Setting Hi(x1, x2) =
(wid(x, vi))

2, the respective 1-center problem, where we wish to minimize
maxi=1,...,n Qi(d(x, vi)), is equivalent to

min z,

s.t. Hi(x1, x2) ≤ (z − si)
2, ∀i = 1, . . . , n′,

Hi(x1, x2) ≤ (z − si), ∀i = n′ + 1, . . . , n,

(x1, x2) ∈ R0, z ≥ max
i=1,...,n

si .

(See Sect. 6.1 for a geometric interpretation of this model.) The above examples
suggest the following more general parametric quadratic model,

min z,

s.t. Hi(x1, x2) ≤ hi(z), ∀i = 1, . . . , n,

(x1, x2) ∈ R0,

where the functions {hi(z)}i are increasing in z for some relevant interval [a,∞),
a ∈ R. Indeed, we will show in Sect. 6.1 that several generalizations of the classical
geometric Euclidean problem can be solved in O(n) time, when the functions {hi(z)}i
are polynomials of bounded degree. Nevertheless, even the latter model is not general
enough to accommodate the well known Euclidean ‘round-trip’ 1-center problems,
(see [9, 16] and Sect. 6.5).

2.1 The Extended Parametric Problem

To accommodate for the above and other models, where the transportation cost func-
tions can be transformed to a quadratic formulation, we will consider the following
extended model: For i = 1, . . . , n,

1. Hi(x1, x2 : z) is a continuous piecewise polynomial, of bounded constant degree,
of its three variables (x1, x2 : z). The subdomains of its pieces are induced by a
constant number of hyperplanes.

2. For any real z, Hi(x1, x2 : z) is a continuous, convex and piecewise quadratic
function of (x1, x2).

3. For z ≤ z′, {(x1, x2) : Hi(x1, x2 : z) ≤ 0} ⊆ {(x1, x2) : Hi(x1, x2 : z′) ≤ 0}.
The continuous optimization model that we consider is then,

min z,

s.t. Hi(x1, x2 : z) ≤ 0, ∀i = 1, . . . , n,

(x1, x2) ∈ R0.
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Similarly, the discrete problem is defined by

min z,

s.t. Hi(x1, x2 : z) ≤ 0, ∀i = 1, . . . , n,

(x1, x2) ∈ V = {vj = (Aj ,Bj ) : j = 1, . . . ,m}.
Unlike the parametric models presented earlier, the above extended parametric

model does not require separability of the variable (parameter) z from the location
variables (x1, x2). This is essential in order to deal with transportation cost func-
tions expressed as sums of distances, and transform them into polynomials. For
example, consider the following Euclidean model with the set of planar demand
points S, |S| = n. When a demand point (customer) y ∈ S places a call to the server,
located at x = (x1, x2), the server will travel to y, pick up a package, deliver it
to some prespecified destination xy and return to its home base at x. The trans-
portation cost function of y is given by the weighted tour length of the server, i.e.,
Q′

y(x1, x2) = wy(d(x, y) + d(y, xy) + d(xy, x)). This function is the sum of Euclid-
ean distances and it is not a polynomial in x. Nevertheless, as shown in Sect. 6.5, the
respective 1-center problem, defined by minx maxy∈S Q′

y(x), can be converted into
the above extended parametric model.

We note that the functions Hi(x1, x2 : z), i = 1, . . . , n, are not assumed to be
convex in z. Therefore, the continuous version is not a convex programming prob-
lem. Nevertheless, the above extended continuous model constitutes a special case
of the parametrized Helly systems discussed in [1, 2, 26, 27]. Specifically, condi-
tion 2 implies that the intersection of the parametrized system with the hyperplane
{z = constant} is a family of convex sets, for which the classical Helly’s theorem ap-
plies. Condition 3 implies that we have an indexed nested set system. See Sect. 4.2
for the algorithmic implications.

To simplify the presentation and the technical discussion, unless otherwise
stated, we will discuss mainly the above simpler linear parametric case, where
Hi(x1, x2 : z) = Hi(x1, x2) − z, for i = 1, . . . , n. In Sect. 4.2 we will consider the
extended parametric version.

3 Solving the Continuous Planar Piecewise Quadratic Problem

In this section we deal only with the optimization of the linear parametric problem,
i.e., minimization of the function U(x1, x2), defined in (2).

We first note that the general conic quadratic programming methods, (see [4]), are
applicable to some instances of our continuous model. Specifically, when each func-
tion Hi is a pure quadratic, i.e., has only one quadratic ‘piece’, we can directly use
conic quadratic programming to solve the models. However, this general approach,
leads to polynomial but not strongly polynomial algorithms, and does not yield the
linear and subquadratic complexity bounds that we achieve for our bi-variate planar
problems.

In the continuous case, the model defined in (2) reduces to a 3-variable convex
program with a linear objective function, and O(n) convex, piecewise quadratic
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constraints. It is a special case of the convex programming model studied by
Amenta [1, 2]. Therefore, (from Theorems 5.4.1, 6.2.1 and 6.4.2 in [1]), we conclude
that the continuous planar model can be solved as an LP-type problem of dimension 3.

The results by Amenta apply even to the following convex programming problem,
defined on R

d , for any fixed d :

min x1,

s.t. Pi(x1, . . . , xd) ≤ 0, ∀i = 1, . . . , n,

(x1, . . . ., xd) ∈ R
d .

Pi(x1, . . . , xd), i = 1, . . . , n, is a continuous, convex, piecewise polynomial func-
tion. Its pieces are defined by a constant number of hyperplanes in R

d . Moreover, as-
sume that the degrees of all pieces of all the functions {Pi(x1, . . . , xd)}i are bounded
above by some given constant, deg.

All the constraints are algebraic. Therefore the violation and basis computation
primitives in [1, 2] can indeed be calculated in constant time if we use the gen-
eral model of algebraic computation and comparisons over the reals, which is the
most common computational model used in computational geometry [18, 38, 39, 43].
Thus, we conclude that for any fixed d , the above continuous piecewise polynomial
convex model in R

d , can be solved as an LP-type problem, by the randomized algo-
rithms of Clarkson [12] and Matoušek, Sharir and Welzl [29] in O(n) time.

It can also be solved in O(n) time by the deterministic algorithm of Chazelle and
Matoušek [10], which is a derandomization of the randomized algorithm in [29].

We note in passing that the applicability of the framework by Chazelle and Ma-
toušek to the above program follows from the fact that the Vapnik-Chervonenkis
dimension (VC-dimension) of the respective range spaces induced by the above con-
vex program is finite. In the case of convex programming testing the finiteness of
the dimension reduces to verifying that the arrangement formed by any set of k con-
straints has O(kc) cells for some constant c. This clearly holds when the constraints
are expressed by fixed-degree polynomials in fixed dimensions, (see Appendix 7.2
in [41]). Since the arrangement can be constructed in near O(kc) time [3], the com-
putational subsystem oracle requirement in [10], is also satisfied. (If each constraint
is expressed by a piecewise fixed-degree polynomial, where the number of pieces is
bounded by some constant q , we still have a finite VC-dimension, since the respective
arrangement has O((qk)c) cells.)

We now show that in the case of our planar location problem (2), we do not
need to use the general and weak model of algebraic computation and compar-
isons over the reals. We can instead apply a stronger computational model. The
violation and basis computation primitives can be executed in constant time in the
planar case if we can obtain an “explicit” representation of intersection points of
pairs of quadratic constraints. Specifically, for these two primitives we need to find
(x1, x2, z) satisfying a system of the form Ht(x1, x2) − z = 0, where t = i, j, k, for
some triplet of indices 1 ≤ i, j, k ≤ n. The latter is equivalent to finding (x1, x2) sat-
isfying the two (piecewise) quadratic constraints, Hi(x1, x2) − Hj(x1, x2) = 0 and
Hi(x1, x2) − Hk(x1, x2) = 0. We need to deal only with nondegenerate systems, cor-
responding to isolated intersection points (solutions). A pair of planar quadratic con-
straints has at most four isolated intersection points. A component of any such point is
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a solution of some univariate quartic polynomial, and therefore can be explicitly rep-
resented by radicals. Hence, comparisons over the reals can, in the planar quadratic
case, be transformed in constant time into comparisons over the rationals.

We summarize the above with the following theorem.

Theorem 3.1 The continuous planar piecewise quadratic 1-center problem (2) can
be solved deterministically by an O(n) (strongly) polynomial algorithm.

Finally, we note that the results in [10, 12, 29] apply to a more general class of
algebraic convex programs. For example, in our context, we can allow each function
Hi(x1, x2) to represent a positively weighted sum of the Euclidean distances from a
server located at (x1, x2) to a pair of planar points, say {vi, ui}. This will capture the
continuous center round-trip model, (see Sect. 6), and imply its solvability in linear
time.

3.1 The Separable Case

In the separable case, i.e., when Hi(x1, x2) = Fi(x1)+Gi(x2), i = 1, . . . , n, is convex
separable piecewise quadratic, there is another solution approach, which is not based
on the derandomization algorithm of Chazelle and Matoušek [10].

First, we show that by solving O(logn) univariate subproblems, in O(n logn)

total time, we can identify a convex polygon R∗ containing an optimal solution, such
that each function Hi(x1, x2), i = 1, . . . , n, is pure quadratic and separable over R∗.
(For this step we do not need to assume that the functions {Hi(x1, x2)}i are separable.)

We make the following general position assumption on the set of
∑n

i=1 pi parti-
tioning lines. There is a constant c, such that no subset of cardinality greater than c

of partitioning lines, can intersect at a point in the plane.
The restriction of U(x1, x2) to a line L in the plane is a convex piecewise quadratic

function. If we set p = maxi=1,...,n pi , the restriction of each function Hi(x1, x2) to
L has at most p + 1 quadratic arcs. Moreover, each pair Hi(x1, x2) and Hj(x1, x2)

of restricted functions intersects at most s = 4(2p + 1) times on L. (This follows
from the results on upper envelopes discussed in the next subsection.) Hence, from
Theorem 8.1 in the Appendix, the restriction of U(x1, x2) to L has O(λs(n)) break-
points, for s = 4(2p + 1). Nevertheless, (xL

1 , xL
2 ), the minimum point of U(x1, x2)

on L can be directly computed in O(n) time by the algorithm of Zemel [45]. Also, by
computing a constant number of directional derivatives of U(x1, x2) at (xL

1 , xL
2 ) we

can determine in O(n) time the halfplane determined by L, which contains a global
minimum point of U(x1, x2) in the plane. Indeed, let � be the direction of L, and let
NL be the normal vector to L. Let L denote the set of partitioning lines containing
(xL

1 , xL
2 ). For each line Lj ∈ L, let �j be the direction of Lj . (There are at most c

such lines.) The derivatives of U(x1, x2) at (xL
1 , xL

2 ) in the directions � and −� are
nonnegative. Evaluate the derivatives of U(x1, x2) at (xL

1 , xL
2 ) in all the directions in

the set {NL,−NL} ∪ {�j ,−�j : Lj ∈ L}. By convexity, if all these directional deriv-
atives are nonnegative, then (xL

1 , xL
2 ) is a global minimum point of U(x1, x2) in the

plane. Otherwise, the global minimum is in the unique halfplane (among the pair of
halfplanes determined by L), which contains all the negative directional derivatives
of U(x1, x2) in the above set. (See Sect. 27, [40].)
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With the above machinery, we can now use the multidimensional search proce-
dures in [17, 30, 32]. With these methods, applied to the set of

∑n
i=1 pi partitioning

lines, after solving O(logn) line restricted subproblems in O(n logn) total time, we
can identify a convex polygon R∗, containing an optimal solution, over which all the
piecewise quadratic functions are actually quadratic.

(We note in passing that in the piecewise quadratic model of Foul [22], all the
partitioning lines are vertical or horizontal. We can directly perform binary searches
over the set of vertical lines and then over the set of horizontal lines, spending O(n)

time for each such line. Hence, for this case in O(n logn) total time we identify a
rectangle R∗, containing the optimal solution, over which each function Hi(x1, x2) is
quadratic.)

U(x1, x2) is then the upper envelope of convex quadratics over R∗. Without loss
of generality we assume that R∗ ⊆ R0.

Turning back to the separable case, the problem of minimizing U(x1, x2) over
R∗ can now be formulated as a 5-variable convex minimization problem where the
objective function and all the constraints but two are linear [18]. For i = 1, . . . , n, let
FR∗

i (x1) = aix
2
1 + bix1 + ci , and GR∗

i (x2) = dix
2
2 + eix2 + fi , denote the quadratic

restrictions to R∗ of Fi(x1) and Gi(x2), respectively. Note that ai ≥ 0 and di ≥ 0, for
i = 1, . . . , n.

min z,

s.t. z ≥ aiv + bix1 + ci + diw + eix2 + fi, ∀i = 1, . . . , n,

v ≥ x2
1 ,

w ≥ x2
2 ,

x ∈ R∗.

We can then directly apply the algorithm in [18] to locate an optimal solution of
U(x1, x2) in R∗ in O(n) time. (See the Appendix for a short description of Dyer’s
model.)

The probabilistic center problem in [22], described in the Introduction, is a special
case of the separable model.

4 Solving the Discrete Planar Piecewise Quadratic Problem

To solve the general discrete model, we will first need several results from [41] on
complexity and algorithms related to envelopes of general planar Jordan arcs and
curves. All the relevant material is listed in the Appendix. For further details the
reader is referred to [41].

A Jordan arc is an image of the closed unit interval under a continuous bijective
mapping, and an unbounded Jordan curve is an image of the open unit interval (or of
the entire real line) that separates the plane. Let � be a collection of n Jordan arcs in
the plane. It is assumed that each pair of arcs intersect in at most s points, for some
fixed constant s, and that each arc has at most t points of vertical tangency, for some
fixed constant t , so that we can break it into at most t + 1 arcs that are monotone
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in the x1 direction. In our study all the Jordan arcs are piecewise quadratic. We use
the common convention that a (pure) quadratic arc is a connected subset of a conic,
which is defined as a set {(x1, x2) : P(x1, x2) = 0}, for some, not identically equal to
zero, quadratic function P(x1, x2).

Consider a pair of x1-monotone piecewise quadratic Jordan arcs, γ1, γ2, each hav-
ing at most k quadratic pieces. If both γ1 and γ2 are pure quadratics, i.e., k = 1, then
they intersect at most s = 4 times. (See Bezout’s Theorem, Chap. 16 in [5], which
implies that the maximum number of intersections of two conics is 4.)

In general, for any k, the number of intersection points is at most 4(2k − 1). To
validate the latter bound we note that the total number of breakpoints between the
pieces of γ1 and γ2 is at most 2k − 2. Hence, the real line is partitioned into 2k − 1
adjacent intervals, such that the restrictions of both γ1 and γ2 to a given interval
are pure quadratic. In particular, γ1 and γ2 intersect at most 4 times over any given
interval. Therefore, the total number of intersection points of γ1 and γ2 is at most
4(2k − 1).

Remark 4.1 We view each x1-monotone Jordan arc as a function of x1, defined over
some closed interval of the real line. If all the arcs in a given collection of x1-
monotone functions have the same common domain, we can clearly extend them
to become unbounded x1-monotone Jordan curves by augmenting horizontal rays at
their endpoints. This process will not increase s, the maximum number of intersection
points between pairs of curves.

For a real z and i = 1, . . . , n, the convex level set Ri(z) = {(x1, x2) ∈ R0 :
Hi(x1, x2) ≤ z} is assumed to be compact. The arrangement of the pi lines induces a
partition of the plane into O(p2

i ) polyhedral faces. The boundary of Ri(z) is quadratic
over each face that it intersects. Due to the convexity of Ri(z), each line is intersected
by the boundary of Ri(z) at most twice, and the total number of such intersection
points is at most 2pi . Therefore, the boundary of Ri(z) can have at most ki = 2pi +1
quadratic pieces (arcs). Moreover, this boundary can be decomposed into the union
of a concave upper hull and a convex lower hull, both having a total of at most ki

quadratic arcs. The boundary of Ri(z) can contain at most two vertical segments. For
convenience, such vertical segments will be attached to the lower hull of the bound-
ary. With the exception of the two vertical segments, all the arcs are monotone in the
x1 direction. Hence, each such arc can be viewed as a function defined over some in-
terval of the x1 axis. (Some of the pieces can be linear.) Figure 1 illustrates the above
concepts. In this example, there are three partitioning lines. The concave upper hull,
and the convex lower hull of the boundary of Ri(z) are depicted by the dashed and
dotted curves, respectively. The upper hull has 3 pieces, while the lower hull has 5
pieces, including one vertical segment.

The domain of the maximum function U(x1, x2) can then be partitioned by the set
of

∑n
i=1 pi = O(n) lines into O(n2) polyhedral sets, so that on each such polyhedral

set, U(x1, x2) is the upper envelope of n convex quadratic functions.
We now return to the solution of the discrete model.
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Fig. 1 Illustration of the set
Ri(z)

Given is a set of m points V = {vj = (Aj ,Bj ) : j = 1, . . . ,m} in the plane. The
discrete problem is to compute

min
j=1,...,m

U(Aj ,Bj ).

Using the above notation, in the discrete problem we look for the smallest value of z,
such that there is at least one point vj ∈ V contained in R′(z) = ⋂n

i=1 Ri(z).
We apply the parametric approach of Megiddo [31].
We first need to address the piecewise structure of the functions {Hi(x1, x2)}i .
As noted above, the boundary of Ri(z) can have at most ki = 2pi + 1 quadratic

arcs. Moreover, this boundary can be decomposed into the union of an x1-monotone
concave upper hull ui(z) and an x1-monotone convex lower hull li (z), both having
a total of at most ki arcs. We represent each envelope by its O(ki) quadratic arcs,
{uk

i (z)}k and {lki (z)}k , respectively. Let u(z) and l(z) be the lower envelope and the
upper envelope of the collections of the concave quadratic arcs {uk

i (z)}ik and the
convex quadratic arcs {lki (z)}ik , respectively. We restrict the domain of the functions
u(z) and l(z) to an interval, say A′(z) ≤ x1 ≤ A′′(z), which is the intersection of the
domains of all the functions (of the variable x1) {ui(z)}i , {li (z)}i .

The boundary of the convex feasible set R′(z) is easily obtained from l(z) and u(z)

by computing their (at most 2) intersection points in the common domain A′(z) ≤
x1 ≤ A′′(z).

Since ki is assumed to be constant, both u(z) and l(z) are envelopes of O(n)

quadratic arcs. We can now apply the results in the Appendix (separately) to the two
collections of arcs, with possibly different subdomains of the interval [A′(z),A′′(z)],
{uk

i (z)}ik and {lki (z)}ik .
By Theorems 8.2 and 8.4 we conclude that l(z) and u(z) can be generated serially

in O(λ5(n) logn) time, and in O(logn) parallel time (with O(λ6(n)) processors).
The complexity of the two envelopes, as well as the boundary of R′(z), is O(λ6(n)).

Remark 4.2 There is an alternative way to generate u(z) and l(z). First, convert each
quadratic arc function uk

i (z) and lki (z) to a function defined on the entire interval
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[A′(z),A′′(z)] by augmenting two tangential lines at its two endpoints. (The con-
vexity/concavity properties are preserved.) Each pair of such functions may intersect
at most 6 times. Then, apply Theorems 8.1 and 8.3 for unbounded x1 monotone
families. However, we do not see how to improve upon the complexity achieved by
computing envelopes of arcs, as above.

Next, for each point vj = (Aj ,Bj ), we test whether vj is in R′(z). Due to the
convexity of R′(z), the concave upper part of the boundary of R′(z) is a subset of the
graph of u(z) and its convex lower part is a subset of the graph of l(z). Therefore, by
applying a binary search over the breakpoints of u(z) and l(z) it takes O(logn) time
(with a single processor) to determine whether a given point vj is in R′(z). Hence, it
takes O(logn) time, with O(m) processors, to verify whether R′(z) contains at least
one point of V .

To summarize, we have the following lemma.

Lemma 4.1 For each real z, we can test whether R′(z) contains some point in V =
{v1, . . . , vm}, in O((m + λ5(n)) logn) serial time, or in O(logn) parallel time (with
O(m + λ6(n)) processors).

The optimal solution to the discrete model is given by z∗, the smallest value of z

such that R′(z) contains a point in V . With the above machinery we can now find z∗
by a direct implementation of the general parametric approach of Megiddo [31]. The
total serial running time is then O((m + λ6(n)) log2 n + (m + λ5(n)) log3 n). (Note
that the latter bound is bounded by O(m log3 n + n log3 n log∗ n)1 [41].)

Theorem 4.1 The discrete planar piecewise quadratic problem (2) can be solved
deterministically in O((m + λ5(n)) log3 n) (serial) time.

For the classical Euclidean and rectilinear geometric problems listed in the Intro-
duction, the implementation of the above approach yields better complexity bounds
for solving the discrete cases. Suppose that m = n, V = {vi = (Ai,Bi) : i = 1, . . . , n},
and Qi(d(vi, x)) = si + wid(vi, x), for i = 1, . . . , n. In the Euclidean case, for each
real z, the level sets {Ri(z)}i define a collection of planar discs. The boundaries of
each pair of level sets are two circles and obviously they intersect at most s = 2 times.
Hence, the above parametric approach will solve the discrete problem in this case in
O(n log3 n) time.

Proposition 4.1 The discrete planar Euclidean weighted 1-center problem, where
the center has to be located at one of the n demand points can be solved determinis-
tically in O(n log3 n) time.

1Recall that log∗ n is the minimum number of times q such that q consecutive applications of the log

operator will map n to a value smaller than 1, i.e.,

(q)
︷ ︸︸ ︷
log . . . log n ≤ 1.



Algorithmica (2010) 57: 252–283 267

Remark 4.3 The latter bound can possibly be further improved to O(n log2 n) by
invoking the technique in [13]. The two phases of our parallel algorithm are finding
the intersection R′(z) of n planar discs, and testing, for each point in V , whether it
belongs to this intersection. Cole’s technique requires that the parallel algorithm used
will satisfy the bounded fan-in/fan-out property. We note that the second phase of
our algorithm uses simultaneous binary searches, and it has this property, (see [13,
14]). On the other hand, we are unaware of any parallel algorithm with the bounded
fan-in/fan-out property, to generate the intersection of halfplanes or even congruent
planar discs i.e., discs having the same radius.

For comparison purposes, we note that the optimal time to solve the discrete
Euclidean unweighted case, where Qi(d(vi, x)) = d(vi, x) for i = 1, . . . , n, is
θ(n logn), (see [28]).

In the rectilinear case, the weighted and the unweighted discrete problems can
be solved in O(n logn) and O(n) times, respectively. First, note that in the planar
case, after transforming (Ai,Bi) to (Ci,Di) = (Ai + Bi,Ai − Bi), i = 1, . . . , n,
the rectilinear (�1) distances are replaced by the �∞ distances. Define f (x1) =
maxi=1,...,n wi |x1 − Ci | and g(x2) = maxi=1,...,n wi |x2 − Di |. The objective value
at a planar point (x1, x2) is then given by U(x1, x2) = max{f (x1), g(x2)}. Let
Cmin = mini=1,...,n Ci , Cmax = maxi=1,...,n Ci , Dmin = mini=1,...,n Di , and Dmax =
maxi=1,...,n Di .

In the unweighted model, for i = 1, . . . , n, U(Ci,Di) = max{Ci − Cmin,Cmax −
Ci,Di −Dmin,Dmax −Di}. The optimal discrete solution can therefore be computed
in O(n) time.

In the weighted version, the piecewise linear and convex upper envelopes f (x1)

and g(x2) can be constructed in O(n logn) time, by using standard divide and con-
quer procedures. (See also the results in Theorems 8.1, 8.2 in the Appendix, with
s = 1.) Then, for i = 1, . . . , n, it takes O(logn) time to compute f (Ci), g(Di), and
U(Ci,Di). Therefore, the optimal discrete solution for the weighted version is com-
putable in O(n logn) time. In addition to the above deterministic algorithms there
also exists the randomized algorithm in [26, 27] which requires a linear number of
operations to solve the planar weighted discrete model. This algorithm is based on a
discrete LP-type model developed by the author.

Proposition 4.2 The discrete planar rectilinear weighted 1-center problem, where
the center has to be located at one of the n demand points can be solved determinis-
tically in O(n logn) time. The unweighted version can be solved deterministically in
O(n) time.

4.1 Using the Parametric Approach to Solve the Continuous Model

The parametric approach which we have used above for solving the discrete model,
can also be used to solve the continuous models. However, the complexity is sub-
quadratic. We first demonstrate how to apply the approach to the linear parametric
problem. In the next section we apply it to the extended parametric model presented
in Sect. 2.1. Specifically, in the continuous case, we can first identify the polygon R∗,
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containing an optimal solution, over which all the functions Hi(x1, x2), i = 1, . . . , n,
are pure quadratic. As explained above this phase takes O(n logn) time. We then
apply the parametric approach.

We assume that R∗ has already been computed and Hi(x1, x2) is quadratic for i =
1, . . . , n. For a given real z and i = 1, . . . , n, the convex level set Ri(z) = {(x1, x2) ∈
R0 : Hi(x1, x2) ≤ z} has been assumed to be compact. We will say that z is feasible
if the convex feasible set

R(z) = R∗ ∩
( n⋂

i=1

Ri(z)

)

,

is nonempty. The optimal solution to the above model is given by z∗, the smallest
value of z such that R(z) is nonempty.

Thus, given a real z, our goal is to test efficiently whether z is feasible or not. We
will do it by constructing the piecewise quadratic boundary of R(z).

As noted above, for each i = 1, . . . , n, the boundary of Ri(z) can be decomposed
into the union of an x1-monotone concave quadratic arc H+

i (x1, x2) = z, and an
x1-monotone convex quadratic arc H−

i (x1, x2) = z. (We view both H−
i (x1, x2) and

H+
i (x1, x2) as functions of the variable x1.) Moreover, for each pair i, j , the quadratic

arcs H+
i (x1, x2) = z and H+

j (x1, x2) = z (H−
i (x1, x2) = z and H−

j (x1, x2) = z) in-
tersect at most 4 times.

Let u(z) denote the lower envelope of the collection of the concave quadratic arcs
{H+

i (x1, x2) = z}i , and let l(z) denote the upper envelope of the collection of the
convex quadratic arcs {H−

i (x1, x2) = z}i . We view both u(z) and l(z) as functions
of x1, and restrict their domain to an interval, say A′(z) ≤ x1 ≤ A′′(z), which is the
intersection of the domains of all 2n arcs (functions) {H+

i (x1, x2) = z}i , {H−
i (x1, x2)

= z}i . Note that u(z) is concave and l(z) is convex over this common domain. The
boundary of R(z) is easily obtained from u(z) and l(z) by computing the (at most 2)
intersection points between them in the interval [A′(z),A′′(z)], and their intersection
points with the boundary of the rectangle R∗.

Using the above mentioned properties of the two collections, {H+
i (x1, x2) =

z}i , {H−
i (x1, x2) = z}i , Theorems 8.1 and 8.3 in the Appendix imply that u(z) and

l(z) can be generated serially in O(λ4(n) logn) time, and in O(logn) parallel time
with O(λ4(n)) processors. (To see the applicability of these results note that all
the arcs in {H+

i (x1, x2) = z}i , {H−
i (x1, x2) = z}i are restricted to the same domain,

[A′(z),A′′(z)]. Therefore, from Remark 4.1 in the previous section, each of the two
collections can be viewed as a set of n unbounded x1-monotone Jordan curves with
at most 4 intersections between any pair of curves.)

The above complexity bounds include also the effort to generate all the arcs
{H+

i (x1, x2) = z}i , {H−
i (x1, x2) = z}i , as well as the bounds A′(z) and A′′(z). The

complexity of the two envelopes u(z) and l(z) and the complexity of the boundary of
R(z) are all O(λ4(n)).

To summarize, for each real z, we can now test whether R(z) is empty or not in
O(λ4(n) logn) serial time or in O(logn) parallel time (with O(λ4(n)) processors).

With the above machinery, we can find z∗ by directly implementing the general
parametric approach of Megiddo [31]. The total serial running time is O(λ4(n) log3 n).
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(λ4(n) = θ(n2α(n)), where α(n) is the inverse of the Ackermann function, and it sat-
isfies λ4(n) log3 n = o(n log3 n log∗ n), Chap. 3 in [41].)

4.2 Solving the Extended Parametric Quadratic Model

In this section we briefly discuss the solution of the extended parametric quadratic
model,

min z,

s.t. Hi(x1, x2 : z) ≤ 0, ∀i = 1, . . . , n,

(x1, x2) ∈ R0,

where each function Hi(x1, x2 : z) satisfies the three properties listed in Sect. 2. As
noted in Sect. 2, the continuous model is a special case of the parametrized Helly
systems discussed in [1, 2]. The three properties ensure that the violation and basis
computation primitives can indeed be calculated in constant time. Therefore, our con-
tinuous model can be solved in O(n) time by the randomized algorithms described
by Amenta. It is not clear whether the derandomization method of Chazelle and Ma-
toušek [10] is applicable to the parametrized Helly systems.

To obtain efficient deterministic algorithms for both the continuous and the dis-
crete versions of this general model, we can apply the same approach used above to
solve the linear parametric model. We only need to modify several definitions and ad-
dress the issue of computing and representing intersection points of certain quadratic
arcs.

For a real z and i = 1, . . . , n, the convex level set Ri(z) is now defined by
Ri(z) = {(x1, x2) ∈ R0 : Hi(x1, x2 : z) ≤ 0}. From the properties of the functions
{Hi}i , it is clear that for any fixed z, the level sets have the same piecewise quadratic
structure as the level sets in Sect. 3.1. In particular, the boundary of Ri(z) can be
decomposed into the union of a concave upper hull and a convex lower hull, both
consisting of a constant number of quadratic arcs. We can then apply the serial and
parallel algorithms to construct and represent R′(z) = ⋂n

i=1 Ri(z), the intersection of
the n level sets.

We also note that R′(z) is monotone in the parameter z, i.e., if z ≤ z′, then R′(z) ⊆
R′(z′). Therefore, the parametric algorithm of Megiddo [31] is directly applicable
to find the smallest value of the parameter such that R′(z) is either nonempty (in
the continuous model), or contains at least one of the points of V (in the discrete
version). The only remaining question is the representation of the critical values of the
parameter z that we encounter throughout the application of the parametric algorithm.

Suppose that H ′
j (x1, x2 : z) = 0 and H ′

k(x1, x2 : z) = 0 represent two quadratic
arcs. Each function Hi(x1, x2 : z) is piecewise polynomial in (x1, x2 : z) and quadratic
in (x1, x2). Therefore, each intersection point of the above two quadratic arcs, can be
represented explicitly by formulas involving quadratic, cubic and quartic roots of
polynomials in z. Each critical value of the parameter z that we encounter is then a
root of an equation obtained by equating two such formulas. Hence, any critical value
z′ is itself a root of some polynomial of the parameter z, which can be expressed
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explicitly. (See [38, 39, 44] for computational methods to handle algebraic functions
and their roots.)

We conclude that the complexity bounds of solving the above parametric models
coincide with the respective bounds given in Sect. 3. Specifically, the continuous and
the discrete versions are solved in O(λ5(n) log3 n) and O(m log3 n + λ5(n) log3 n)

times, respectively. In the continuous case, the bound reduces to O(λ4(n) log3 n) if
for any real z, and i = 1, . . . , n, Hi(x1, x2 : z) is a convex (pure) quadratic function
of (x1, x2).

Theorem 4.2 The continuous and discrete planar extended parametric piece-
wise quadratic problems can be solved deterministically in O(λ5(n) log3 n) and
O(m log3 n + λ5(n) log3 n) (serial) times, respectively. The continuous version can
also be solved as an LP-type problem by a randomized algorithm in O(n) time.

The above scheme is not recommended as a practical tool. Its main purpose is to
prove that several planar 1-center problems, like the Euclidean round-trip problem,
where the degree of the piecewise polynomial functions {Hi(x1, x2 : z)}i is bounded
above by a small constant, (e.g., at most 4), have subquadratic complexity.

5 Extensions to R
d

We note that some of the results in the paper can be extended to R
d , for any fixed d .

Consider the extension of the planar continuous model discussed in Sect. 3. In the
extended model we assume that all the pieces of the convex and piecewise quadratic
functions {Hi(x1, x2, . . . , xd)}i in R

d , are induced by a grid of R
d , defined by a set

of O(n) partitioning hyperplanes. First we observe that a subquadratic deterministic
O(n(logn log logn)2d−1) algorithm for the continuous model follows directly from
the algebraic convex model of Toledo [44]. Secondly, the results of Clarkson [12],
Matoušek, Sharir and Welzl [29], Chazelle and Matoušek [10] and Dyer [18] imply
the existence of randomized and deterministic linear time algorithms for the respec-
tive models in R

d . (See Sect. 3 for a note on the applicability of the derandomization
algorithm of Chazelle and Matoušek [10].) We summarize the above with the follow-
ing propositions.

Proposition 5.1 For any fixed positive integer d , the continuous piecewise quadratic
problem in R

d can be solved deterministically in O(n) time.

Proposition 5.2 For any fixed positive integer d , there is a randomized algorithm
to solve the continuous extended parametric piecewise quadratic problem in R

d in
O(n) time.

Again, we note that the model of computation that we use to solve our center
problem is that of algebraic computation and comparisons over the reals. In particular,
the algorithms that we discuss output a small system of polynomial equations which
determine the optimal solution [18, 38, 39, 44].
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For the effectiveness of the above algorithms for relatively large values of d , we
refer the reader to the computational studies reported in [46].

It is not clear to us how the parametric approach, and the results on the intersection
properties of quadratic arcs, which we applied in Sect. 4 to solve the discrete planar
models, can be extended to R

d , for d ≥ 3.
In the discrete model we are given a set of n points V = {vi = (vi1, . . . , vid) :

i = 1, . . . , n} in R
d , and the goal is to compute mini=1,...,n U(vi1, . . . , vid), where

U(x1, . . . , xd) = maxi=1,...,n Hi(x1, . . . , xd). Note that for a fixed d , the discrete
model can be solved in quadratic time by computing the objective at each point of V .

With the exception of some special cases that we discuss below, we are unaware
of any subquadratic algorithm which solves the discrete 1-center problem in R

d , for
any fixed d ≥ 3.

In particular, we do not yet know how to solve the discrete weighted or unweighted
Euclidean problem in R

d for a fixed d ≥ 3 in subquadratic time.
For comparison purposes we note that the discrete weighted (unweighted) recti-

linear 1-center problem in R
d can be solved deterministically in O(n logn) (O(n))

time, for any fixed d . This latter result follows directly from the formulation in [35,
Sect. 2.2, p. 119], which is used there to show the solvability of the continuous
weighted 1-center problem in R

d , for any fixed d , in O(n) time. This formulation
is based on the simple observation that for any y = (y1, . . . , yd) ∈ R

d , the rectilinear
norm, d1(y,0), can be represented as the maximum of absolute values of 2d linear
functions of the form δ1y1 + · · · + δdyd , where δj ∈ {−1,1}. As a result, to compute
the objective value of the 1-center rectilinear problem for query points, it is sufficient
to generate O(2d) 1-dimensional upper envelopes. Each such envelope is the point-
wise maximum function of n single variable linear functions, and it can be computed
in O(n logn) and O(n) times, for the weighted and unweighted versions, respec-
tively. The total efforts needed to generate all these envelopes are O(2dn logn) for
the weighted model and O(2dn) for the unweighted model. Given any query point
vi ∈ R

d , with this machinery it now takes O(2d logn) (O(2d)) time to compute the
objective value at vi for the weighted (unweighted) version. To solve the discrete rec-
tilinear model we compute the objective at all points in V = {v1, . . . , vn}. The total
efforts to solve the discrete rectilinear problem are then O(2dn logn) and O(2dn) for
the weighted and unweighted versions, respectively.

We summarize the above with the following proposition.

Proposition 5.3 For any fixed positive integer d , the discrete weighted (unweighted)
rectilinear problem in R

d can be solved deterministically in O(n logn) (O(n)) time.

Finally, we cite the O(n) discrete LP-type randomized algorithm of Halman [26,
27], mentioned above, to solve the discrete weighted �∞ 1-center problem in R

d for
any fixed d ≥ 3. We note that this algorithm can also be used to solve the rectilinear,
i.e., �1 1-center model. It is not yet known whether this randomized algorithm can be
derandomized.
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6 Applications

In addition to the single facility location problems which have motivated our study,
and are described in the Introduction, in this section we present several additional
problems that can be solved using the general unifying model presented above.

6.1 Formulating and Solving the Euclidean Weighted 1-Center Problem and Some
Variants in R

d

Suppose that {si}i=1,...,n are arbitrary reals and {wi}i=1,...,n are nonnegative reals.
Consider the Euclidean weighted 1-center problem with addends,

min z,

s.t. si + wid(vi, x) ≤ z, ∀i = 1, . . . , n, (3)

x ∈ R
d .

Define s = maxi=1,...,n si . Note that z ≥ s. Then, substitute z = z′ + s to reduce the
problem to,

min (z′ + s),

s.t. (wid(vi, x))2 ≤ (z′ + s − si)
2, ∀i = 1, . . . , n,

z′ ≥ 0,

x ∈ R
d .

An equivalent formulation is

min z′,

s.t. (wid(vi, x))2 ≤ (z′)2 + 2(s − si)z
′ + (s − si)

2, ∀i = 1, . . . , n,

z′ ≥ 0,

x ∈ R
d .

From the definition of s, we note that the above model is a special case of the follow-
ing parametric separable quadratic model:

min z,

s.t. xT Dix + cT
i x + bi ≤ hi(z), ∀i = 1, . . . , n,

(4)
z ≥ 0,

x ∈ R
d,

where for each i = 1, . . . , n, Di is a nonnegative diagonal matrix, ci ∈ R
d , bi ∈ R,

and hi(z) = ∑mi

j=1 bij z
j is a polynomial with nonnegative real coefficients. For i =

1, . . . , n, let di ∈ R
d denote the diagonal vector of the diagonal matrix Di . Let m =

maxi=1,...,n mi .
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Finally, replacing the objective function z by zm, substituting u = zm, vj = −zj =
−(u)j/m, j = 1, . . . ,m, and yk = x2

k , k = 1, . . . , d , we obtain the following equiva-
lent problem,

min u,

s.t. yT di + xT ci + bi +
mi∑

j=1

bij vj ≤ 0, ∀i = 1, . . . , n,

−(u)j/m ≤ vj , ∀j = 1, . . . ,m,

x2
k ≤ yk, ∀k = 1, . . . , d,

u ≥ 0,

x, y ∈ R
d .

We note that the d + m nonlinear constraints in the above problem are convex
since u ≥ 0.

Summarizing, we obtain the following result by applying the algorithm in [18].

Proposition 6.1 Assuming that d and m are constant, the parametric separable
quadratic problem (4) is solvable deterministically in O(n) time.

Staying within the framework of 1-center problems with general nonlinear cost
functions, (see [23, 24]), we now use the above parametric separable quadratic model
to identify additional classes of nonlinear problems that are solvable in linear time.
Consider the following extension of the Euclidean 1-center problem, where for each
i = 1, . . . , n, Qi(d(x, vi)) = (wid(x, vi))

ti + si . (If ti = 1 for i = 1, . . . , n, we obtain
the Euclidean 1-center problem with addends discussed above.)

Setting s = maxi=1,...,n si the respective center problem can be formulated as

min z′,

s.t. (wid(vi, x))2 ≤ (z′ + (s − si))
2/ti , ∀i = 1, . . . , n,

(5)
z′ ≥ 0,

x ∈ R
d .

Consider first the following class of concave cost functions of the service distance.
Let m be a constant positive integer. Suppose that for each i = 1, . . . , n, the trans-
portation cost function Qi(d(vi, x)) is the sum of the addend si and the mi -th root
of (wid(vi, x))2, for some positive integer mi ≤ m. Formally, in terms of the above
model ti = 2/mi , for i = 1, . . . , n. We refer to this model as the general 1-center
center problem with addends.

If all the addends {si}i are zero, the linear solvability holds for a wider class of
cost functions. Suppose that for each i = 1, . . . , n, ti ∈ T ′, where T ′ = {f1, . . . , fm}
is a finite set of constant cardinality of positive real numbers. (Note that Qi is convex
(concave) if ti = fk and fk ≥ 1 (ti = fk ≤ 1).)

Let f = minj=1,...,m fj . The respective center problem is then
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min z2/f ,

s.t. (wid(vi, x))2 ≤ (z)2/ti , ∀i = 1, . . . , n,
(6)

z ≥ 0,

x ∈ R
d .

We refer to this model as the extended 1-center center problem without addends.
Finally, define u = z2/f , and vj = −z2/fj = −uf/fj , for j = 1, . . . ,m, to obtain the
following equivalent model with m nonlinear convex constraints. (We use the con-
vention that vi(j) = vk if and only if ti = fk .)

min u,

s.t. (wid(vi, x))2 + vi(j) ≤ 0, ∀i = 1, . . . , n,

u ≥ 0,

−uf/fj ≤ vj , ∀j = 1, . . . ,m,

x ∈ R
d .

Summarizing the discussion in this section we present the next proposition.

Proposition 6.2 The general 1-center problem with addends (5) and the extended
1-center problem without addends (6) are both solvable deterministically in O(n)

time.

6.2 A Minimax Location Problem with Respect to a Fixed Number of Demand
Regions

The second model is based on [8] and [34]. In this location problem there is a fixed
number, say r , of compact regions {A1, . . . ,Ar} in R

2, representing communities of
customers. A new facility (server), modeled by a point in R

2 needs to be located in
the plane. There are n measures (characteristics), modeled respectively by n distance
functions {d1, . . . , dn}, which affect the location of the new facility. Specifically, if
x is the location of the facility, the service distance of region Aj according to the n

characteristics is given by

Dj(x) = min
y∈Aj

max
i=1,...,n

widi(x, y).

The unconstrained single facility doubly weighted minimax location problem takes
the following form:

min
x∈R2

[V (x) = max
j=1,...,n

{ujDj (x)}], (7)

where wi is a positive weight associated with the i-th characteristic, i = 1, . . . , n;
and uj the positive weight of Aj , j = 1, . . . , r . (For example, wi may signify the
relative importance of the i-th characteristic, while uj may represent the size of the
population of region Aj .) Thus, if each set Aj , j = 1, . . . , r , is assumed to be closed
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convex and polygonal, Problem (7) may be formulated as the following mathematical
problem:

min z

s.t. w̄ij di(x, yj ) ≤ z, i = 1, . . . , n, j = 1, . . . , r,
(8)

yj ∈ Aj , j = 1, . . . , r,

x ∈ R
2,

where w̄ij = wiuj , ∀i, j . Assume further that each set Aj , j = 1, . . . , r , has a fixed
number of edges, and each distance measure di , i = 1, . . . , n, is induced by some
polyhedral planar norm with a fixed number of faces, e.g., rectilinear.

Proposition 6.3 The planar unconstrained single facility doubly weighted minimax
location problem with n polyhedral norms is solvable deterministically in O(n) time.

Proof The problem reduces to a linear program in fixed dimension, (there are 2r + 3
variables). Hence, it can be solved in O(n) time by the algorithm in [32]. �

We note that the paper by Brimberg and Wesolowsky [8] provides no complexity
analysis of the above model, while the complexity reported in [34] is superquadratic.

Finally, we note that even the case where a fixed number of the characteristics are
measured by weighted Euclidean distances can also be solved in linear time. Suppose
that a fixed number, say m, of the di are Euclidean distances, while the rest n−m are
rectilinear. The respective problem can be formulated as

min max{v,
√

w}
s.t. w̄ij (yj1 − x1) + w̄ij (yj2 − x2) ≤ v, ∀i = m + 1, . . . , n, j = 1, . . . , r,

−w̄ij (yj1 − x1) + w̄ij (yj2 − x2) ≤ v, ∀i = m + 1, . . . , n, j = 1, . . . , r,

w̄ij (yj1 − x1) − w̄ij (yj2 − x2) ≤ v, ∀i = m + 1, . . . , n, j = 1, . . . , r,
(9)

−w̄ij (yj1 − x1) − w̄ij (yj2 − x2) ≤ v, ∀i = m + 1, . . . , n, j = 1, . . . , r,

w̄2
ij ((x1 − yj1)

2 + (x2 − yj2)
2) ≤ w, ∀i = 1, . . . ,m, j = 1, . . . , r,

yj ∈ Aj , j = 1, . . . , r,

x ∈ R
2.

The above can be rewritten in a form that fits the model in [18]:

min z

s.t. v2 ≤ z,

w ≤ z,

w̄ij (yj1 − x1) + w̄ij (yj2 − x2) ≤ v, ∀i = m + 1, . . . , n, j = 1, . . . , r,
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−w̄ij (yj1 − x1) + w̄ij (yj2 − x2) ≤ v, ∀i = m + 1, . . . , n, j = 1, . . . , r,

w̄ij (yj1 − x1) − w̄ij (yj2 − x2) ≤ v, ∀i = m + 1, . . . , n, j = 1, . . . , r,

−w̄ij (yj1 − x1) − w̄ij (yj2 − x2) ≤ v, ∀i = m + 1, . . . , n, j = 1, . . . , r,

w̄2
ij ((x1 − yj1)

2 + (x2 − yj2)
2) ≤ w, ∀i = 1, . . . ,m, j = 1, . . . , r,

yj ∈ Aj , j = 1, . . . , r,

x ∈ R
2.

The above reduction leads to the following result.

Proposition 6.4 The planar unconstrained single facility doubly weighted minimax
location problem with n weighted rectilinear norms, and m weighted Euclidean
norms is solvable deterministically in O(n) time, when m is constant.

6.3 Location Problems with Respect to Several Scenarios

The problem studied in this section was first introduced in Fernández et al. [21] who
considered a location problem with respect to several scenarios. That paper does not
discuss complexity issues of the problem and it only suggests that the problem can
be solved using a general non linear programming approach. Let A be a finite set,
(|A| = n), of existing facilities in R

2, and let W be a finite set, (|W | = m), of weight
vectors w ∈ R

n. Each w ∈ W satisfies
∑

a∈A wa = 1 and w ≥ 0; ∀a ∈ A.
Each weight w ∈ W represents a location scenario while wa is the probability

given to the existing facility a ∈ A in the scenario w. It is assumed that costs are
measured by the squared Euclidean norm, || · ||22. Examples of such a quadratic for-
mulation are the problems of locating hospitals, fire stations, police stations, and
other emergency service agencies. (See e.g., [21, 36].) Therefore, the minimax regret
problem is

min
x∈R2

max
w∈W

(∑

a∈A

wa‖x − a‖2
2 −

∑

a∈A

wa‖x(w) − a‖2
2

)

(10)

where x(w) is the optimal solution of problem:

min
x∈R2

∑

a∈A

wa‖x − a‖2
2.

It is well-known that x(w) =
∑

a∈A waa
∑

a∈A wa
= ∑

a∈A waa. Hence, we reformulate Prob-

lem (10) as

min
x∈R2

max
w∈W

(∑

a∈A

wa‖x − a‖2
2 −

∑

a∈A

wa‖
∑

a∈A

waa − a‖2
2

)

.

Expanding the scalar products in the above expression and simplifying, we obtain the
following equivalent formulation. (See [21] for the details.)

min
x∈R2

max
w∈W

‖x − x(w)‖2
2.
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This problem is just the Euclidean unweighted center problem with respect to the
points {x(w) : w ∈ W },

min z

s.t. (x1 − x1(w))2 + (x2 − x2(w))2 ≤ z, ∀w ∈ W,

and it can be solved in O(m) time by Megiddo [30]. (This effort does not include the
O(mn) time to compute the set {x(w) : w ∈ W }.)

6.4 The Scalarized and Constrained Version of Ohsawa’s Model

This problem is based on the scalarized version of the quadratic bicriteria mean-
center planar location models of Ohsawa [36]. (See [36] for further details.)

We consider doubly weighted versions of his scalarized and constrained models,
and show that even these can be formulated as special cases of the model in [18]. (We
use the same notation as in the previous problem.) For a ∈ A, the mean and center
nonnegative weights of demand point a are denoted by wa and w′

a , respectively. M

and M ′ are nonnegative reals that bound the weighted mean and center values.

min
∑

a∈A

wa[(a1 − x1)
2 + (a2 − x2)

2] + max
a∈A

(w′
a[(a1 − x1)

2 + (a2 − x2)
2]),

s.t.
∑

a∈A

wa[(a1 − x1)
2 + (a2 − x2)

2] ≤ M, (11)

max
a∈A

(w′
a[(a1 − x1)

2 + (a2 − x2)
2]) ≤ M ′.

Proposition 6.5 The scalarized doubly weighted version of Ohsawa’s planar loca-
tion model (11) is solvable deterministically in linear time.

Proof The problem is equivalent to the next model that fits Dyer’s formulation.

min (v + u),

s.t.
∑

a∈A

wa[(a1 − x1)
2 + (a2 − x2)

2] ≤ v,

∑

a∈A

wa[(a1 − x1)
2 + (a2 − x2)

2] ≤ M,

w′
a[(a1 − x1)

2 + (a2 − x2)
2] ≤ u, ∀a ∈ A,

w′
a[(a1 − x1)

2 + (a2 − x2)
2] ≤ M ′, ∀a ∈ A.

Note that all the constraints are convex and separable quadratic. Therefore, this model
can be solved in O(n) time as a special case of Dyer’s model. �

For comparison purposes, Ohsawa [36] only considers the unweighted version and
reports a complexity of O(n logn).
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6.5 Other Problems

In this section we consider two variants of the depot one-way and round-trip location
problems discussed in [42].

For the first model, let A ⊂ R
2, be a finite set, representing the locations of existing

depots, and S ⊂ R
2 be the set of customers. Let m = |A|. Suppose that x ∈ R

2 denotes
the location of the single server (center). When a customer y ∈ S places a call for
service, the server at x will travel to y, pick up a package, and deliver the package to
the closest depot to y in A. d(x, y) + d(y,A) represents the distance traveled by the
server from its home base x to customer y and then to the closest depot to y in A.
The problem to be solved is:

min
x∈R2

max
y∈S

{d(x, y) + d(y,A)}.

(We use the common notation d(y,A) = minu∈A d(y,u).) This is the depot one-
way model, where the tour initiates at the home base of the server and terminates at
the depot. We show that the above problem can be transformed into a minimax prob-
lem with positive addends which in turns fits into our model. First, we note that the
variable y can be restricted to a finite subset when S is a polygon. Let Va denote the
a-th cell of the Voronoi diagram of the set A, i.e., Va = {z ∈ R

2 : d(z, a) = d(z,A)}.
For any given x, the inner maximum when y is restricted to Va ∩ S is attained at
a corner point of the convex hull of Va ∩ S, (due to the convexity of the objective
d(x, y) + d(y, a)). For example, when S is a planar polygon with O(k) edges, and d

is the Euclidean distance function, each edge of S can intersect O(m) Voronoi cells.
(Recall that the complexity of the Voronoi diagram is O(m), and the time to construct
it is O(m logm).) Hence, the total number of corner points that we have to consider
is O(mk). Let S∗ be the set of all the extreme points of the convex hulls of the sets
{Va ∩ S}a . In this case the model reduces to

min
x∈R2

max
y∈S∗{d(x, y) + d(y,A)},

which corresponds to the geometric problem of finding a circle of minimum radius
enclosing a given set of O(mk) circles. (Each point y ∈ S∗ defines a circle of radius
d(y,A).) Hence, from the results in Sect. 6.1, the latter problem is solvable in O(mk)

time.

Proposition 6.6 The depot one-way Euclidean planar single facility center problem
defined by a set of depots A, |A| = m, and a polygonal customer set S, having O(k)

edges, can be solved deterministically in O(mk + m logm) time.

We note that a version of the above model when S is a finite set of n points, was
solved in [42] in O((n + m) logm) time.

Next we address the following variant of the ‘customer round-trip’ planar single
facility center problem as introduced in [15] and [6], and later analyzed by Tamir and
Halman [42]. In this model we assume that the customer set S is finite, (|S| = n), and
each customer y ∈ S is associated with a unique depot, say xy ∈ A. (For example,
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xy can be the closest depot to y in A.) Suppose that x denotes the location of the
single server (center). When a customer y ∈ S places a call for service, the server at
x will travel to y, pick up a package, deliver the package to xy in A, and return to
its home base. d(x, y) + d(y, xy) + d(xy, x) represents the total round-trip distance
traveled by the server. Each customer y ∈ S has a positive weight wy , and the goal is
to establish one server x optimizing the following problem:

min
x∈R2

max
y∈S

wy(d(x, y) + d(y, xy) + d(xy, x)).

This problem can be solved, as noted by Tamir and Halman [42], using a covering ar-
gument. Let r be the parameter of the covering problem. To ensure a weighted round-
trip cover of r for y ∈ S one has to consider all the points of the set Yy(r) = {x ∈ R

2 :
d(x, y) + d(x, xy) ≤ r/wy − d(y, xy)}. In the Euclidean case, Yy(r) is an ellipse,
and the problem reduces to finding the smallest value of r such that

⋂
y∈S Yy(r) �= ∅.

Since the ellipses can be in general position the problem is not separable and there-
fore it does not reduce to Dyer’s model. Nevertheless, this Euclidean problem can be
solved in O(n) time by invoking the algorithm by Chazelle and Matoušek [10].

We note that in the rectilinear case the above round-trip model reduces to a 3-
variable linear program, and therefore can be solved in O(n) time, (see [42]).

Summarizing we have the following result.

Proposition 6.7 The rectilinear and Euclidean round-trip planar single facility cen-
ter problems are solvable deterministically in linear time.

We are unaware of any algorithms in the literature to solve the discrete version
of the above round-trip problem. (Recall from the Introduction and Sect. 2.1, that
in the discrete version of a center problem, the location of the center is restricted to
be in some prespecified finite set V = {v1, . . . , vm}.) We next show that the discrete
problem can be formulated as a special case of the extended parametric model in
Sect. 2 with the constraints, Hi(x1, x2 : z) ≤ 0, i = 1, . . . , n.

Using the above notation, for each y ∈ S, define vy = y, uy = xy , and sy =
wyd(y, xy) = wyd(vy,uy). Also set s = maxy∈S sy , and z′ = z − s. Then, the con-
straint wy(d(x, vy) + d(x,uy) + d(vy,uy)) ≤ z, is equivalent to

wyd(x, vy) + wyd(x,uy) ≤ (z′ + s − sy).

Notice that since z ≥ s, we have z′ ≥ 0. The set E′
y := {x ∈ R

2 : d(x, vy) +
d(x,uy) = (z′+s−sy)

wy
} is an ellipse whose foci are vy and uy . ( (z′+s−sy)

wy
is the length

of the axis of E′
y containing these two foci.)

To obtain a function Hy(x1, x2 : z) satisfying the three conditions in Sect. 2, we
first assume without loss of generality, that the axes of the ellipse E′

y are parallel to
the coordinate axes and it is centered at (0,0). (Any other ellipse with the same axes
lengths can be obtained from this ellipse by applying a rotation and a translation.)

Let E be an ellipse with foci vy = (−f,0) and uy = (f,0), (i.e., its axes are
parallel to the coordinate axes), centered at x = (0,0). An analytical expression of
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E, given that its horizontal (major) axis has length 2h(z′) with 2h(z′) = (z′+s−sy)

wy
, is

E = {x ∈ R
2 : d(x, vy) + d(x,uy) = 2hy(z

′)}.
The length of its vertical (minor) axis, denoted by 2b, is then defined by f 2 =
[hy(z

′)]2 − b2. By using basic algebraic transformations, (see [7]), we have,

E =
{

x = (x1, x2) ∈ R
2 : x2

1

[hy(z′)]2
+ x2

2

[hy(z′)]2 − f 2
= 1

}

.

Therefore, the inequality d(x, vy)+d(x,uy) ≤ 2hy(z
′) is equivalent to Hy(x1, x2 :

z′) ≤ 0, where H(x1, x2 : z′) is defined by

H(x1, x2 : z′) = x2
1([hy(z

′)]2 − f 2) + x2
2 [hy(z

′)]2 − [hy(z
′)]2([hy(z

′)]2 − f 2).

It is easy to check that Hy(x1, x2 : z′) satisfies the three conditions listed in Sect. 2.

1. Hy(x1, x2 : z′) is a polynomial of degree 4 of its three variables, (x1, x2, z
′).

2. For each real z′, Hy(x1, x2 : z′) is a convex quadratic function of (x1, x2).
3. For z′ ≤ z′′, {(x1, x2) : Hy(x1, x2 : z′) ≤ 0} ⊆ {(x1, x2) : Hy(x1, x2 : z′′) ≤ 0},

since the lengths of the axes of the ellipse {(x1, x2) : H(x1, x2 : z′) = 0} are re-
spectively smaller than the lengths of the axes of the ellipse {(x1, x2) : H(x1, x2 :
z′′) = 0}. (The latter follows from the monotonicity of the function hy , and the
fact that the two ellipses have the same pair of foci.)

Therefore, applying Theorem 4.2, we obtain the following result.

Proposition 6.8 The discrete version of the customer round trip planar single facility
location problem can be solved in O(m log3 n + λ5(n) log3 n).

7 Final Comments and Questions

In this paper we introduced a unifying model for 1-center planar location problems
with transportation costs defined by piecewise quadratic convex functions of the dis-
tances. We use the results by Chazelle and Matoušek [10], to claim that the continu-
ous model can be solved deterministically in linear time. For the pure and separable
case we also show an alternative O(n) deterministic algorithm based on the model
in [18]. (The latter algorithm can be used to solve the piecewise separable version in
O(n logn) time.)

To solve the discrete version we resort to methods of computing envelopes of
curves and the parametric approach of Megiddo [31], and solve the problem in sub-
quadratic time. Using our models we improve upon some existing results. Specif-
ically, the continuous model of Foul [22], which was solved there, approximately
only, by general nonlinear iterative algorithms, is solved here exactly by an O(n)

deterministic algorithm. In addition, we solve the discrete version of Foul’s model
in O(λ5(n) log3 n) time. (In the discrete version of Foul’s model the center must be
located at one of the planar points in {(Ai,Bi) : i = 1, . . . , n}.) The O(n logn) com-
plexity of the scalarized and constrained models in [36], is improved to O(n) even
for the weighted versions.
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Appendix

In this Appendix we include, for the sake of readability, several technical results that
are used in the paper.

A.1 Complexity of Intersections and Envelopes of Jordan Arcs and Curves

We cite and list several theorems that give the complexity of intersecting Jordan arcs
and curves.

Theorem 8.1 [41, Theorem 6.1] Given a set of n unbounded x1-monotone Jordan
curves with at most s intersections between any pair of curves, its lower envelope has
a λs(n) combinatorial complexity, and it can be computed in O(λs(n) logn) time.

Theorem 8.2 [41, Theorem 6.5] Given a set of n x1-monotone Jordan arcs with at
most s intersections between any pair of arcs, its lower envelope has an O(λs+2(n))

complexity, and it can be computed in O(λs+1(n) logn) time.

Theorem 8.3 ([25], [41, Sect. 6.7]) Given a set of n unbounded x1-monotone Jordan
curves with at most s intersections between any pair of curves, its lower envelope can
be computed in parallel in O(logn) time using O(λs(n)) processors.

Theorem 8.4 ([25], [41, Sect. 6.7]) Given a set of n x1-monotone Jordan arcs with
at most s intersections between any pair of arcs, its lower envelope can be computed
in parallel in O(logn) time using (λs+2(n)) processors.

λs(n) is the maximum length of a Davenport-Schinzel sequence of order s on
n symbols. The reader is referred to Chap. 3 in [41] for the exact definitions
and properties of the functions λs(n). We note that λ1(n) = O(n), λ2(n) = O(n),
λ3(n) = θ(nα(n)), and λ4(n) = θ(n2α(n)), where α(n) is the inverse of the Acker-
mann function. Also, for any constant s, λs(n) = o(n log∗ n).

A.2 Dyer’s Class of Convex Programs

Dyer [18] considered the following ‘almost’ linear program:

min x1

s.t. a′
ix ≤ bi, i ∈ N = {1, . . . , n} (12)

x ∈ K = {x ∈ R
d : gj (x) ≤ 0}, j ∈ M = {1, . . . ,m},

where the functions gj (x), j = 1, . . . ,m, are differentiable over some open neigh-
borhood containing K , convex and “essentially equivalent” to polynomials. (For ex-
ample, gj (x) = √

((x1 − a1)
2 + · · · + (xd − ad)2) or gj (x) = −√

x1.) The maxi-
mum degree of these polynomials is denoted by k. In addition, it is assumed that
max{m,d, k} � n.
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In his paper Dyer presented a linear time algorithm to solve the above problem.
The algorithm, except for some additional technical steps, which are crucial for han-
dling the non-linear constraints, is similar to those of Megiddo [32], Dyer [17] and
Clarkson [11]. The output is a set of at most d linear equalities and some nonlin-
ear constraints binding at the optima, which will describe the optimal solutions of
(12). Let T (m,k, d,n) be the number of algebraic operations needed to solve (12).
This number satisfies T (m,k, d,n) ≤ (km)O(d)3d2

n. Also, the space bound is poly-
nomial in m,k, d and linear in n. (The term (km)O(d) is the effort needed to solve the
problem non-recursively when n = 0, which is equivalent to checking a polynomial
predicate in the variables x1, . . . , xd . Constructing and checking this polynomial is
doable, using the results by Renegar [38, 39]), and Basu et al. [3] in (mk)O(d) time.)
For further details the reader is referred to [18].
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